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Abstract
Contrary to popular assumption, DRAMs used in most
modern computers retain their contents for several sec-
onds after power is lost, even at room temperature and
even if removed from a motherboard. Although DRAMs
become less reliable when they are not refreshed, they
are not immediately erased, and their contents persist
sufficiently for malicious (or forensic) acquisition of us-
able full-system memory images. We show that this phe-
nomenon limits the ability of an operating system to pro-
tect cryptographic key material from an attacker with
physical access. We use cold reboots to mount successful
attacks on popular disk encryption systems using no spe-
cial devices or materials. We experimentally characterize
the extent and predictability of memory remanence and
report that remanence times can be increased dramatically
with simple cooling techniques. We offer new algorithms
for finding cryptographic keys in memory images and for
correcting errors caused by bit decay. Though we discuss
several strategies for partially mitigating these risks, we
know of no simple remedy that would eliminate them.

1 Introduction

Most security experts assume that a computer’s memory
is erased almost immediately when it loses power, or that
whatever data remains is difficult to retrieve without spe-
cialized equipment. We show that these assumptions are
incorrect. Ordinary DRAMs typically lose their contents
gradually over a period of seconds, even at standard oper-
ating temperatures and even if the chips are removed from
the motherboard, and data will persist for minutes or even
hours if the chips are kept at low temperatures. Residual
data can be recovered using simple, nondestructive tech-
niques that require only momentary physical access to the
machine.

We present a suite of attacks that exploit DRAM re-
manence effects to recover cryptographic keys held in

memory. They pose a particular threat to laptop users who
rely on disk encryption products, since an adversary who
steals a laptop while an encrypted disk is mounted could
employ our attacks to access the contents, even if the com-
puter is screen-locked or suspended. We demonstrate this
risk by defeating several popular disk encryption systems,
including BitLocker, TrueCrypt, and FileVault, and we
expect many similar products are also vulnerable.

While our principal focus is disk encryption, any sen-
sitive data present in memory when an attacker gains
physical access to the system could be subject to attack.
Many other security systems are probably vulnerable. For
example, we found that Mac OS X leaves the user’s lo-
gin password in memory, where we were able to recover
it, and we have constructed attacks for extracting RSA
private keys from Apache web servers.

As we discuss in Section 2, certain segments of the
computer security and semiconductor physics communi-
ties have been conscious of DRAM remanence effects
for some time, though strikingly little about them has
been published. As a result, many who design, deploy, or
rely on secure systems are unaware of these phenomena
or the ease with which they can be exploited. To our
knowledge, ours is the first comprehensive study of their
security consequences.

Highlights and roadmap In Section 3, we describe
experiments that we conducted to characterize DRAM
remanence in a variety of memory technologies. Contrary
to the expectation that DRAM loses its state quickly if
it is not regularly refreshed, we found that most DRAM
modules retained much of their state without refresh, and
even without power, for periods lasting thousands of re-
fresh intervals. At normal operating temperatures, we
generally saw a low rate of bit corruption for several sec-
onds, followed by a period of rapid decay. Newer memory
technologies, which use higher circuit densities, tended
to decay more quickly than older ones. In most cases, we
observed that almost all bits decayed at predictable times
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and to predictable “ground states” rather than to random
values.

We also confirmed that decay rates vary dramatically
with temperature. We obtained surface temperatures of
approximately −50 ◦C with a simple cooling technique:
discharging inverted cans of “canned air” duster spray
directly onto the chips. At these temperatures, we typi-
cally found that fewer than 1% of bits decayed even after
10 minutes without power. To test the limits of this ef-
fect, we submerged DRAM modules in liquid nitrogen
(ca. −196 ◦C) and saw decay of only 0.17% after 60 min-
utes out of the computer.

In Section 4, we present several attacks that exploit
DRAM remanence to acquire memory images from which
keys and other sensitive data can be extracted. Our attacks
come in three variants, of increasing resistance to coun-
termeasures. The simplest is to reboot the machine and
launch a custom kernel with a small memory footprint
that gives the adversary access to the retained memory. A
more advanced attack briefly cuts power to the machine,
then restores power and boots a custom kernel; this de-
prives the operating system of any opportunity to scrub
memory before shutting down. An even stronger attack
cuts the power and then transplants the DRAM modules
to a second PC prepared by the attacker, which extracts
their state. This attack additionally deprives the original
BIOS and PC hardware of any chance to clear the memory
on boot. We have implemented imaging kernels for use
with network booting or a USB drive.

If the attacker is forced to cut power to the memory for
too long, the data will become corrupted. We propose
three methods for reducing corruption and for correct-
ing errors in recovered encryption keys. The first is to
cool the memory chips prior to cutting power, which dra-
matically reduces the error rate. The second is to apply
algorithms we have developed for correcting errors in
private and symmetric keys. The third is to replicate the
physical conditions under which the data was recovered
and experimentally measure the decay properties of each
memory location; with this information, the attacker can
conduct an accelerated error correction procedure. These
techniques can be used alone or in combination.

In Section 5, we explore the second error correction
method: novel algorithms that can reconstruct crypto-
graphic keys even with relatively high bit-error rates.
Rather than attacking the key directly, our methods con-
sider values derived from it, such as key schedules, that
provide a higher degree of redundancy. For performance
reasons, many applications precompute these values and
keep them in memory for as long as the key itself is in
use. To reconstruct an AES key, for example, we treat the
decayed key schedule as an error correcting code and find
the most likely values for the original key. Applying this
method to keys with 10% of bits decayed, we can recon-

struct nearly any 128-bit AES key within a few seconds.
We have devised reconstruction techniques for AES, DES,
and RSA keys, and we expect that similar approaches
will be possible for other cryptosystems. The vulnerabil-
ity of precomputation products to such attacks suggests
an interesting trade-off between efficiency and security.
In Section 6, we present fully automatic techniques for
identifying such keys from memory images, even in the
presence of bit errors.

We demonstrate the effectiveness of these attacks in
Section 7 by attacking several widely used disk encryption
products, including BitLocker, TrueCrypt, and FileVault.
We have developed a fully automated demonstration at-
tack against BitLocker that allows access to the contents
of the disk with only a few minutes of computation. No-
tably, using BitLocker with a Trusted Platform Module
(TPM) sometimes makes it less secure, allowing an at-
tacker to gain access to the data even if the machine is
stolen while it is completely powered off.

It may be difficult to prevent all the attacks that we de-
scribe even with significant changes to the way encryption
products are designed and used, but in practice there are a
number of safeguards that can provide partial resistance.
In Section 8, we suggest a variety of mitigation strategies
ranging from methods that average users can apply to-
day to long-term software and hardware changes. Each
remedy has limitations and trade-offs. As we conclude
in Section 9, it seems there is no simple fix for DRAM
remanence vulnerabilities.

Online resources A video demonstration of our attacks
and source code for some of our tools are available at
http://citp.princeton.edu/memory.

2 Previous Work

Previous researchers have suggested that data in DRAM
might survive reboots, and that this fact might have se-
curity implications. To our knowledge, however, ours is
the first security study to focus on this phenomenon, the
first to consider how to reconstruct symmetric keys in the
presence of errors, the first to apply such attacks to real
disk encryption systems, and the first to offer a systematic
discussion of countermeasures.

We owe the suggestion that modern DRAM contents
can survive cold boot to Pettersson [33], who seems to
have obtained it from Chow, Pfaff, Garfinkel, and Rosen-
blum [13]. Pettersson suggested that remanence across
cold boot could be used to acquire forensic memory im-
ages and obtain cryptographic keys, although he did not
experiment with the possibility. Chow et al. discovered
this property in the course of an experiment on data life-
time in running systems. While they did not exploit the
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Memory Type Chip Maker Memory Density Make/Model Year
A SDRAM Infineon 128Mb Dell Dimension 4100 1999
B DDR Samsung 512Mb Toshiba Portégé 2001
C DDR Micron 256Mb Dell Inspiron 5100 2003
D DDR2 Infineon 512Mb IBM T43p 2006
E DDR2 Elpida 512Mb IBM x60 2007
F DDR2 Samsung 512Mb Lenovo 3000 N100 2007

Table 1: Test systems we used in our experiments

property, they remark on the negative security implica-
tions of relying on a reboot to clear memory.

In a recent presentation, MacIver [31] stated that Mi-
crosoft considered memory remanence attacks in design-
ing its BitLocker disk encryption system. He acknowl-
edged that BitLocker is vulnerable to having keys ex-
tracted by cold-booting a machine when it is used in
“basic mode” (where the encrypted disk is mounted auto-
matically without requiring a user to enter any secrets),
but he asserted that BitLocker is not vulnerable in “ad-
vanced modes” (where a user must provide key material
to access the volume). He also discussed cooling mem-
ory with dry ice to extend the retention time. MacIver
apparently has not published on this subject.

It has been known since the 1970s that DRAM cell
contents survive to some extent even at room temperature
and that retention times can be increased by cooling. In
a 1978 experiment [29], a DRAM showed no data loss
for a full week without refresh when cooled with liquid
nitrogen. Anderson [2] briefly discusses remanence in his
2001 book:

[A]n attacker can . . . exploit . . . memory re-
manence, the fact that many kinds of computer
memory retain some trace of data that have been
stored there. . . . [M]odern RAM chips exhibit
a wide variety of memory remanence behaviors,
with the worst of them keeping data for several
seconds even at room temperature. . .

Anderson cites Skorobogatov [40], who found signifi-
cant data retention times with static RAMs at room tem-
perature. Our results for modern DRAMs show even
longer retention in some cases.

Anderson’s main focus is on “burn-in” effects that oc-
cur when data is stored in RAM for an extended period.
Gutmann [22, 23] also examines “burn-in,” which he at-
tributes to physical changes that occur in semiconductor
memories when the same value is stored in a cell for
a long time. Accordingly, Gutmann suggests that keys
should not be stored in one memory location for longer
than several minutes. Our findings concern a different
phenomenon: the remanence effects we have studied oc-
cur in modern DRAMs even when data is stored only

momentarily. These effects do not result from the kind
of physical changes that Gutmann described, but rather
from the capacitance of DRAM cells.

Other methods for obtaining memory images from live
systems include using privileged software running un-
der the host operating system [43], or using DMA trans-
fer on an external bus [19], such as PCI [12], mini-PCI,
Firewire [8, 15, 16], or PC Card. Unlike these techniques,
our attacks do not require access to a privileged account
on the target system, they do not require specialized hard-
ware, and they are resistant to operating system counter-
measures.

3 Characterizing Remanence Effects

A DRAM cell is essentially a capacitor. Each cell encodes
a single bit by either charging or not charging one of the
capacitor’s conductors. The other conductor is hard-wired
either to power or to ground, depending on the cell’s
address within the chip [37, 23].

Over time, charge will leak out of the capacitor, and the
cell will lose its state or, more precisely, it will decay to its
ground state, either zero or one depending on whether the
fixed conductor of the capacitor is hard-wired to ground or
power. To forestall this decay, the cell must be refreshed,
meaning that the capacitor must be re-charged to hold
its value. Specifications for DRAM chips give a refresh
time, which is the maximum interval that is supposed to
pass before a cell is refreshed. The standard refresh time
(usually on the order of milliseconds) is meant to achieve
extremely high reliability for normal computer operations
where even infrequent bit errors could cause serious prob-
lems; however, a failure to refresh any individual DRAM
cell within this time has only a tiny probability of actually
destroying the cell’s contents.

We conducted a series of experiments to characterize
DRAM remanence effects and better understand the secu-
rity properties of modern memories. We performed trials
using PC systems with different memory technologies, as
shown in Table 1. These systems included models from
several manufacturers and ranged in age from 9 years to
6 months.
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3.1 Decay at operating temperature

Using a modified version of our PXE memory imaging
program (see Section 4.1), we filled representative mem-
ory regions with a pseudorandom pattern. We read back
these memory regions after varying periods of time with-
out refresh and under different temperature conditions,
and measured the error rate of each sample. The error
rate is the number of bit errors in each sample (the Ham-
ming distance from the pattern we had written) divided by
the total number of bits we measured. Since our pseudo-
random test pattern contained roughly equal numbers of
zeros and ones, we would expect fully decayed memory
to have an error rate of approximately 50% .

Our first tests measured the decay rate of each mem-
ory module under normal operating temperature, which
ranged from 25.5 ◦C to 44.1 ◦C, depending on the ma-
chine (see Figures 1, 2, and 3). We found that the dimen-
sions of the decay curves varied considerably between
machines, with the fastest exhibiting complete data loss
in approximately 2.5 seconds and the slowest taking an
average of 35 seconds. However, the decay curves all dis-
play a similar shape, with an initial period of slow decay,
followed by an intermediate period of rapid decay, and
then a final period of slow decay.

We calculated best fit curves to the data using the logis-
tic function because MOSFETs, the basic components of
a DRAM cell, exhibit a logistic decay curve. We found
that machines using newer memory technologies tend to
exhibit a shorter time to total decay than machines using
older memory technologies, but even the shorter times
are long enough to facilitate most of our attacks. We as-
cribe this trend to the increasing density of the DRAM
cells as the technology improves; in general, memory
with higher densities have a shorter window where data
is recoverable. While this trend might make DRAM re-
tention attacks more difficult in the future, manufacturers
also generally seek to increase retention times, because
DRAMs with long retention require less frequent refresh
and have lower power consumption.

3.2 Decay at reduced temperature

It has long been known that low temperatures can signifi-
cantly increase memory devices’ retention times [29, 2,
46, 23, 41, 40]. To measure this effect, we performed a
second series of tests using machines A–D.

In each trial, we loaded a pseudorandom test pattern
into memory, and, with the computer running, cooled
the memory module to approximately −50 ◦C. We then
powered off the machine and maintained this temperature
until power was restored. We achieved these temperatures
using commonly available “canned air” duster products
(see Section 4.2), which we discharged, with the can
inverted, directly onto the chips.
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Seconds Error % at Error %
w/o power operating temp. at −50 ◦C

A 60 41 (no errors)
300 50 0.000095

B 360 50 (no errors)
600 50 0.000036

C 120 41 0.00105
360 42 0.00144

D 40 50 0.025
80 50 0.18

Table 2: Effect of cooling on error rates

As expected, we observed a significantly lower rate
of decay under these reduced temperatures (see Table 2).
On all of our sample DRAMs, the decay rates were low
enough that an attacker who cut power for 60 seconds
would recover 99.9% of bits correctly.

As an extreme test of memory cooling, we performed
another experiment using liquid nitrogen as an additional
cooling agent. We first cooled the memory module of
Machine A to −50 ◦C using the “canned air” product.
We then cut power to the machine, and quickly removed
the DRAM module and placed it in a canister of liquid
nitrogen. We kept the memory module submerged in the
liquid nitrogen for 60 minutes, then returned it to the
machine. We measured only 14,000 bit errors within a 1
MB test region (0.17% decay). This suggests that, even
in modern memory modules, data may be recoverable for
hours or days with sufficient cooling.

3.3 Decay patterns and predictability

We observed that the DRAMs we studied tended to decay
in highly nonuniform patterns. While these patterns var-
ied from chip to chip, they were very predictable in most
of the systems we tested. Figure 4 shows the decay in
one memory region from Machine A after progressively
longer intervals without power.

There seem to be several components to the decay
patterns. The most prominent is a gradual decay to the
“ground state” as charge leaks out of the memory cells. In
the DRAM shown in Figure 4, blocks of cells alternate
between a ground state of 0 and a ground state of 1, result-
ing in the series of horizontal bars. Other DRAM models
and other regions within this DRAM exhibited different
ground states, depending on how the cells are wired.

We observed a small number of cells that deviated from
the “ground state” pattern, possibly due to manufacturing
variation. In experiments with 20 or 40 runs, a few “ret-
rograde” cells (typically ∼ 0.05% of memory cells, but
larger in a few devices) always decayed to the opposite
value of the one predicted by the surrounding ground state

pattern. An even smaller number of cells decayed in dif-
ferent directions across runs, with varying probabilities.

Apart from their eventual states, the order in which
different cells decayed also appeared to be highly pre-
dictable. At a fixed temperature, each cell seems to decay
after a consistent length of time without power. The rel-
ative order in which the cells decayed was largely fixed,
even as the decay times were changed by varying the
temperature. This may also be a result of manufacturing
variations, which result in some cells leaking charge faster
than others.

To visualize this effect, we captured degraded memory
images, including those shown in Figure 4, after cutting
power for intervals ranging from 1 second to 5 minutes,
in 1 second increments. We combined the results into a
video (available on our web site). Each test interval began
with the original image freshly loaded into memory. We
might have expected to see a large amount of variation
between frames, but instead, most bits appear stable from
frame to frame, switching values only once, after the
cell’s decay interval. The video also shows that the decay
intervals themselves follow higher order patterns, likely
related to the physical geometry of the DRAM.

3.4 BIOS footprints and memory wiping

Even if memory contents remain intact while power is
off, the system BIOS may overwrite portions of memory
when the machine boots. In the systems we tested, the
BIOS overwrote only relatively small fractions of memory
with its own code and data, typically a few megabytes
concentrated around the bottom of the address space.

On many machines, the BIOS can perform a destructive
memory check during its Power-On Self Test (POST).
Most of the machines we examined allowed this test to be
disabled or bypassed (sometimes by enabling an option
called “Quick Boot”).

On other machines, mainly high-end desktops and
servers that support ECC memory, we found that the
BIOS cleared memory contents without any override op-
tion. ECC memory must be set to a known state to avoid
spurious errors if memory is read without being initial-
ized [6], and we believe many ECC-capable systems per-
form this wiping operation whether or not ECC memory
is installed.

ECC DRAMs are not immune to retention effects, and
an attacker could transfer them to a non-ECC machine
that does not wipe its memory on boot. Indeed, ECC
memory could turn out to help the attacker by making
DRAM more resistant to bit errors.
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Figure 4: We loaded a bitmap image into memory on Machine A, then cut power for varying lengths of time. After 5
seconds (left), the image is indistinguishable from the original. It gradually becomes more degraded, as shown after
30 seconds, 60 seconds, and 5 minutes.

4 Imaging Residual Memory

Imaging residual memory contents requires no special
equipment. When the system boots, the memory con-
troller begins refreshing the DRAM, reading and rewriting
each bit value. At this point, the values are fixed, decay
halts, and programs running on the system can read any
data present using normal memory-access instructions.

4.1 Imaging tools

One challenge is that booting the system will necessarily
overwrite some portions of memory. Loading a full oper-
ating system would be very destructive. Our approach is
to use tiny special-purpose programs that, when booted
from either a warm or cold reset state, produce accurate
dumps of memory contents to some external medium.
These programs use only trivial amounts of RAM, and
their memory offsets used can be adjusted to some extent
to ensure that data structures of interest are unaffected.

Our memory-imaging tools make use of several differ-
ent attack vectors to boot a system and extract the contents
of its memory. For simplicity, each saves memory images
to the medium from which it was booted.

PXE network boot Most modern PCs support net-
work booting via Intel’s Preboot Execution Environment
(PXE) [25], which provides rudimentary startup and net-
work services. We implemented a tiny (9 KB) standalone
application that can be booted via PXE and whose only
function is streaming the contents of system RAM via
a UDP-based protocol. Since PXE provides a universal
API for accessing the underlying network hardware, the
same binary image will work unmodified on any PC sys-
tem with PXE support. In a typical attack setup, a laptop

connected to the target machine via an Ethernet crossover
cable runs DHCP and TFTP servers as well as a simple
client application for receiving the memory data. We have
extracted memory images at rates up to 300 Mb/s (around
30 seconds for a 1 GB RAM) with gigabit Ethernet cards.

USB drives Alternatively, most PCs can boot from an
external USB device such as a USB hard drive or flash
device. We implemented a small (10 KB) plug-in for the
SYSLINUX bootloader [3] that can be booted from an
external USB device or a regular hard disk. It saves the
contents of system RAM into a designated data partition
on this device. We succeeded in dumping 1 GB of RAM
to a flash drive in approximately 4 minutes.

EFI boot Some recent computers, including all Intel-
based Macintosh computers, implement the Extensible
Firmware Interface (EFI) instead of a PC BIOS. We have
also implemented a memory dumper as an EFI netboot
application. We have achieved memory extraction speeds
up to 136 Mb/s, and we expect it will be possible to
increase this throughput with further optimizations.

iPods We have installed memory imaging tools on an
Apple iPod so that it can be used to covertly capture
memory dumps without impacting its functionality as a
music player. This provides a plausible way to conceal
the attack in the wild.

4.2 Imaging attacks

An attacker could use imaging tools like ours in a number
of ways, depending on his level of access to the system
and the countermeasures employed by hardware and soft-
ware.
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Figure 5: Before powering off the computer, we spray an upside-down canister of multipurpose duster directly onto the
memory chips, cooling them to −50 ◦C. At this temperature, the data will persist for several minutes after power loss
with minimal error, even if we remove the DIMM from the computer.

Simple reboots The simplest attack is to reboot the
machine and configure the BIOS to boot the imaging
tool. A warm boot, invoked with the operating system’s
restart procedure, will normally ensure that the memory
has no chance to decay, though software will have an
opportunity to wipe sensitive data prior to shutdown. A
cold boot, initiated using the system’s restart switch or by
briefly removing and restoring power, will result in little
or no decay depending on the memory’s retention time.
Restarting the system in this way denies the operating
system and applications any chance to scrub memory
before shutting down.

Transferring DRAM modules Even if an attacker can-
not force a target system to boot memory-imaging tools,
or if the target employs countermeasures that erase mem-
ory contents during boot, DIMM modules can be phys-
ically removed and their contents imaged using another
computer selected by the attacker.

Some memory modules exhibit far faster decay than
others, but as we discuss in Section 3.2 above, cooling a
module before powering it off can slow decay sufficiently
to allow it to be transferred to another machine with mini-
mal decay. Widely-available “canned air” dusters, usually
containing a compressed fluorohydrocarbon refrigerant,
can easily be used for this purpose. When the can is dis-
charged in an inverted position, as shown in Figure 5, it
dispenses its contents in liquid form instead of as a gas.
The rapid drop in pressure inside the can lowers the tem-
perature of the discharge, and the subsequent evaporation
of the refrigerant causes a further chilling. By spraying
the contents directly onto memory chips, we can cool their
surfaces to −50 ◦C and below. If the DRAM is cooled to
this temperature before power is cut and kept cold, we
can achieve nearly lossless data recovery even after the
chip is out of the computer for several minutes.

Removing the memory modules can also allow the
attacker to image memory in address regions where stan-
dards BIOSes load their own code during boot. The at-
tacker could remove the primary memory module from

the target machine and place it into the secondary DIMM
slot (in the same machine or another machine), effectively
remapping the data to be imaged into a different part of
the address space.

5 Key Reconstruction

Our experiments (see Section 3) show that it is possible
to recover memory contents with few bit errors even af-
ter cutting power to the system for a brief time, but the
presence of even a small amount of error complicates
the process of extracting correct cryptographic keys. In
this section we present algorithms for correcting errors
in symmetric and private keys. These algorithms can cor-
rect most errors quickly even in the presence of relatively
high bit error probabilities in the range of 5% to 50%,
depending on the type of key.

A naı̈ve approach to key error correction is to brute-
force search over keys with a low Hamming distance from
the decayed key that was retrieved from memory, but this
is computationally burdensome even with a moderate
amount of unidirectional error. As an example, if only
10% of the ones have decayed to zeros in our memory
image, the data recovered from a 256-bit key with an equal
number of ones and zeroes has an expected Hamming
distance of 12 from the actual key, and the number of
such keys is

(128+12
12

)
> 256.

Our algorithms achieve significantly better perfor-
mance by considering data other than the raw form of
the key. Most encryption programs speed up computation
by storing data precomputed from the encryption keys—
for block ciphers, this is most often a key schedule, with
subkeys for each round; for RSA, this is an extended form
of the private key which includes the primes p and q and
several other values derived from d. This data contains
much more structure than the key itself, and we can use
this structure to efficiently reconstruct the original key
even in the presence of errors.

These results imply an interesting trade-off between
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efficiency and security. All of the disk encryption systems
we studied (see Section 7) precompute key schedules and
keep them in memory for as long as the encrypted disk is
mounted. While this practice saves some computation for
each disk block that needs to be encrypted or decrypted,
we find that it greatly simplifies key recovery attacks.

Our approach to key reconstruction has the advantage
that it is completely self-contained, in that we can recover
the key without having to test the decryption of cipher-
text. The data derived from the key, and not the decoded
plaintext, provides a certificate of the likelihood that we
have found the correct key.

We have found it useful to adopt terminology from
coding theory. We may imagine that the expanded key
schedule forms a sort of error correcting code for the key,
and the problem of reconstructing a key from memory
may be recast as the problem of finding the closest code
word (valid key schedule) to the data once it has been
passed through a channel that has introduced bit errors.

Modeling the decay Our experiments showed that al-
most all memory bits tend to decay to predictable ground
states, with only a tiny fraction flipping in the opposite
direction. In describing our algorithms, we assume, for
simplicity, that all bits decay to the same ground state.
(They can be implemented without this requirement, as-
suming that the ground state of each bit is known.)

If we assume we have no knowledge of the decay pat-
terns other than the ground state, we can model the de-
cay with the binary asymmetric channel, in which the
probability of a 1 flipping to 0 is some fixed δ0 and the
probability of a 0 flipping to a 1 is some fixed δ1.

In practice, the probability of decaying to the ground
state approaches 1 as time goes on, while the probabil-
ity of flipping in the opposite direction remains relatively
constant and tiny (less than 0.1% in our tests). The ground
state decay probability can be approximated from recov-
ered key data by counting the fraction of 1s and 0s, as-
suming that the original key data contained roughly equal
proportions of each value.

We also observed that bits tended to decay in a pre-
dictable order that could be learned over a series of timed
decay trials, although the actual order of decay appeared
fairly random with respect to location. An attacker with
the time and physical access to run such a series of tests
could easily adapt any of the approaches in this section to
take this order into account and improve the performance
of the error-correction. Ideally such tests would be able to
replicate the conditions of the memory extraction exactly,
but knowledge of the decay order combined with an esti-
mate of the fraction of bit flips is enough to give a very
good estimate of an individual decay probability of each
bit. This probability can be used in our reconstruction
algorithms to prioritize guesses.

For simplicity and generality, we will analyze the algo-
rithms assuming no knowledge of this decay order.

5.1 Reconstructing DES keys

We first apply these methods to develop an error correc-
tion technique for DES. The DES key schedule algorithm
produces 16 subkeys, each a permutation of a 48-bit sub-
set of bits from the original 56-bit key. Every bit from the
original key is repeated in about 14 of the 16 subkeys.

In coding theory terms, we can treat the DES key sched-
ule as a repetition code: the message is a single bit, and
the corresponding codeword is a sequence of n copies of
this bit. If δ0 = δ1 < 1

2 , the optimal decoding of such an
n-bit codeword is 0 if more than n/2 of the recovered bits
are 0, and 1 otherwise. For δ0 6= δ1, the optimal decod-
ing is 0 if more than nr of the recovered bits are 0 and 1
otherwise, where

r =
log(1−δ0)− logδ1

log(1−δ0)+ log(1−δ1)− logδ1− logδ0
.

For δ0 = .1 and δ1 = .001 (that is, we are in a block
with ground state 0), r = .75 and this approach will fail to
correctly decode a bit only if more than 3 of the 14 copies
of a 0 decay to a 1, or more than 11 of the 14 copies of
a 1 decay to 0. The probability of this event is less than
10−9. Applying the union bound, the probability that any
of the 56 key bits will be incorrectly decoded is at most
56×10−9 < 6×10−8; even at 50% error, the probability
that the key can be correctly decoded without resorting to
brute force search is more than 98%.

This technique can be trivially extended to correct er-
rors in Triple DES keys. Since Triple DES applies the
same key schedule algorithm to two or three 56-bit key
components (depending on the version of Triple DES),
the probability of correctly decoding each key bit is the
same as for regular DES. With a decay rate of δ0 = .5 and
probability δ1 = .001 of bit flips in the opposite direction,
we can correctly decode a 112-bit Triple DES key with at
least 97% probability and a 168-bit key with at least 96%
probability.

5.2 Reconstructing AES keys

The AES key schedule has a more complex structure than
the DES key schedule, but we can still use it to efficiently
reconstruct a key in the presence of errors.

A seemingly reasonable approach to this problem
would be to search keys in order of distance to the recov-
ered key and output any key whose schedule is sufficiently
close to the recovered schedule. Our implementation of
this algorithm took twenty minutes to search 109 candi-
date keys in order to reconstruct a key in which 7 zeros
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round key 1

⊕ ⊕ ⊕ ⊕Core

round key 2

Figure 6: In the 128-bit AES key schedule, three bytes of
each round key are entirely determined by four bytes of
the preceding round key.

had flipped to ones. At this rate it would take ten days to
reconstruct a key with 11 bits flipped.

We can do significantly better by taking advantage of
the structure of the AES key schedule. Instead of trying
to correct an entire key at once, we can examine a smaller
set of bytes at a time. The high amount of linearity in the
key schedule is what permits this separability—we can
take advantage of pieces that are small enough to brute
force optimal decodings for, yet large enough that these
decodings are useful to reconstruct the overall key. Once
we have a list of possible decodings for these smaller
pieces of the key in order of likelihood, we can combine
them into a full key to check against the key schedule.

Since each of the decoding steps is quite fast, the run-
ning time of the entire algorithm is ultimately limited
by the number of combinations we need to check. The
number of combinations is still roughly exponential in the
number of errors, but it is a vast improvement over brute
force searching and is practical in many realistic cases.

Overview of the algorithm For 128-bit keys, an AES
key expansion consists of 11 four-word (128-bit) round
keys. The first round key is equal to the key itself. Each
remaining word of the key schedule is generated either
by XORing two words of the key schedule together, or by
performing the key schedule core (in which the bytes of a
word are rotated and each byte is mapped to a new value)
on a word of the key schedule and XORing the result with
another word of the key schedule.

Consider a “slice” of the first two round keys consisting
of byte i from words 1-3 of the first two round keys, and
byte i−1 from word 4 of the first round key (as shown
in Figure 6). This slice is 7 bytes long, but is uniquely
determined by the four bytes from the key. In theory,
there are still 232 possibilities to examine for each slice,
but we can do quite well by examining them in order of
distance to the recovered key. For each possible set of 4
key bytes, we generate the relevant three bytes of the next
round key and calculate the probability, given estimates
of δ0 and δ1, that these seven bytes might have decayed
to the corresponding bytes of the recovered round keys.

Now we proceed to guess candidate keys, where a

candidate contains a value for each slice of bytes. We
consider the candidates in order of decreasing total like-
lihood as calculated above. For each candidate key we
consider, we calculate the expanded key schedule and ask
if the likelihood of that expanded key schedule decaying
to our recovered key schedule is sufficiently high. If so,
then we output the corresponding key as a guess.

When one of δ0 or δ1 is very small, this algorithm will
almost certainly output a unique guess for the key. To see
this, observe that a single bit flipped in the key results in
a cascade of bit flips through the key schedule, half of
which are likely to flip in the “wrong” direction.

Our implementation of this algorithm is able to re-
construct keys with 15% error (that is, δ0 = .15 and
δ1 = .001) in a fraction of a second, and about half of
keys with 30% error within 30 seconds.

This idea can be extended to 256-bit keys by dividing
the words of the key into two sections—words 1–3 and 8,
and words 4–7, for example—then comparing the words
of the third and fourth round keys generated by the bytes
of these words and combining the result into candidate
round keys to check.

5.3 Reconstructing tweak keys

The same methods can be applied to reconstruct keys for
tweakable encryption modes [30], which are commonly
used in disk encryption systems.

LRW LRW augments a block cipher E (and key K1) by
computing a “tweak” X for each data block and encrypt-
ing the block using the formula EK1(P⊕X)⊕X . A tweak
key K2 is used to compute the tweak, X = K2⊗ I, where
I is the logical block identifier. The operations ⊕ and ⊗
are performed in the finite field GF(2128).

In order to speed tweak computations, implementations
commonly precompute multiplication tables of the values
K2xi mod P, where x is the primitive element and P is an
irreducible polynomial over GF(2128) [26]. In practice,
Qx mod P is computed by shifting the bits of Q left by
one and possibly XORing with P.

Given a value K2xi, we can recover nearly all of the
bits of K2 simply by shifting right by i. The number of
bits lost depends on i and the nonzero elements of P. An
entire multiplication table will contain many copies of
nearly all of the bits of K2, allowing us to reconstruct the
key in much the same way as the DES key schedule.

As an example, we apply this method to reconstruct the
LRW key used by the TrueCrypt 4 disk encryption system.
TrueCrypt 4 precomputes a 4048-byte multiplication table
consisting of 16 blocks of 16 lines of 4 words of 4 bytes
each. Line 0 of block 14 contains the tweak key.

The multiplication table is generated line by line from
the LRW key by iteratively applying the shift-and-XOR
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multiply function to generate four new values, and then
XORing all combinations of these four values to create
16 more lines of the table. The shift-and-XOR operation
is performed 64 times to generate the table, using the
irreducible polynomial P = x128 +x7 +x2 +x+1. For any
of these 64 values, we can shift right i times to recover
128− (8 + i) of the bits of K2, and use these recovered
values to reconstruct K2 with high probability.

XEX and XTS For XEX [35] and XTS [24] modes, the
tweak for block j in sector I is X = EK2(I)⊗ x j, where
I is encrypted with AES and x is the primitive element
of GF(2128). Assuming the key schedule for K2 is kept
in memory, we can use the AES key reconstruction tech-
niques to reconstruct the tweak key.

5.4 Reconstructing RSA private keys

An RSA public key consists of the modulus N and the
public exponent e, while the private key consists of the
private exponent d and several optional values: prime fac-
tors p and q of N, d mod (p− 1), d mod (q− 1), and
q−1 mod p. Given N and e, any of the private values is
sufficient to generate the others using the Chinese remain-
der theorem and greatest common divisor algorithms. In
practice, RSA implementations store some or all optional
values to speed up computation.

There have been a number of results on efficiently re-
constructing RSA private keys given a fraction of the bits
of private key data. Let n = lgN. N can be factored in
polynomial time given the n/4 least significant bits of p
(Coppersmith [14]), given the n/4 least significant bits of
d (Boneh, Durfee, and Frankel [9]), or given the n/4 least
significant bits of d mod (p−1) (Blömer and May [7]).

These previous results are all based on Coppersmith’s
method of finding bounded solutions to polynomial equa-
tions using lattice basis reduction; the number of contigu-
ous bits recovered from the most or least significant bits of
the private key data determines the additive error tolerated
in the solution. In our case, the errors may be distributed
across all bits of the key data, so we are searching for
solutions with low Hamming weight, and these previous
approaches do not seem to be directly applicable.

Given the public modulus N and the values p̃ and q̃
recovered from memory, we can deduce values for the
original p and q by iteratively reconstructing them from
the least-significant bits. For unidirectional decay with
probability δ , bits pi and qi are uniquely determined by
Ni and our guesses for the i−1 lower-order bits of p and q
(observe that p0 = q0 = 1), except in the case when p̃i and
q̃i are both in the ground state. This yields a branching
process with expected degree (3+δ )2

8 . If decay is not
unidirectional, we may use the estimated probabilities to
weight the branches at each bit.

Combined with a few heuristics—for example, choose
the most likely state first, prune nodes by bounds on the
solution, and iteratively increase the bit flips allowed—
this results in a practical algorithm for reasonable error
rates. This process can likely be improved substantially
using additional data recovered from the private key.

We tested an implementation of the algorithm on a fast
modern machine. For fifty trials with 1024-bit primes
(2048-bit keys) and δ = 4%, the median reconstruction
time was 4.5 seconds. The median number of nodes vis-
ited was 16,499, the mean was 621,707, and the standard
deviation was 2,136,870. For δ = 6%, reconstruction re-
quired a median of 2.5 minutes, or 227,763 nodes visited.

For 512-bit primes and δ = 10%, reconstruction re-
quired a median of 1 minute, or 188,702 nodes visited.

For larger error rates, we can attempt to reconstruct
only the first n/4 bits of the key using this process and
use the lattice techniques to reconstruct the rest of the
key; these computations generally take several hours in
practice. For a 1024-bit RSA key, we would need to
recover 256 bits of a factor. The expected depth of the
tree from our branching reconstruction process would be
( 1

2 +δ )2256 (assuming an even distribution of 0s and 1s)
and the expected fraction of branches that would need to
be examined is 1/2+δ 2.

6 Identifying Keys in Memory

Extracting encryption keys from memory images requires
a mechanism for locating the target keys. A simple ap-
proach is to test every sequence of bytes to see whether it
correctly decrypts some known plaintext. Applying this
method to a 1 GB memory image known to contain a 128-
bit symmetric key aligned to some 4-byte machine word
implies at most 228 possible key values. However, this is
only the case if the memory image is perfectly accurate.
If there are bit errors in the portion of memory containing
the key, the search quickly becomes intractable.

We have developed fully automatic techniques for locat-
ing symmetric encryption keys in memory images, even
in the presence of bit errors. Our approach is similar to
the one we used to correct key bit errors in Section 5. We
target the key schedule instead of the key itself, searching
for blocks of memory that satisfy (or are close to satisfy-
ing) the combinatorial properties of a valid key schedule.
Using these methods we have been able to recover keys
from closed-source encryption programs without having
to disassemble them and reconstruct their key data struc-
tures, and we have even recovered partial key schedules
that had been overwritten by another program when the
memory was reallocated.

Although previous approaches to key recovery do not
require a scheduled key to be present in memory, they
have other practical drawbacks that limit their usefulness
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for our purposes. Shamir and van Someren [39] pro-
pose visual and statistical tests of randomness which can
quickly identify regions of memory that might contain
key material, but their methods are prone to false posi-
tives that complicate testing on decayed memory images.
Even perfect copies of memory often contain large blocks
of random-looking data that might pass these tests (e.g.,
compressed files). Pettersson [33] suggests a plausibil-
ity test for locating a particular program data structure
that contains key material based on the range of likely
values for each field. This approach requires the operator
to manually derive search heuristics for each encryption
application, and it is not very robust to memory errors.

6.1 Identifying AES keys

In order to identify scheduled AES keys in a memory
image, we propose the following algorithm:

1. Iterate through each byte of memory. Treat the fol-
lowing block of 176 or 240 bytes of memory as an
AES key schedule.

2. For each word in the potential key schedule, calcu-
late the Hamming distance from that word to the key
schedule word that should have been generated from
the surrounding words.

3. If the total number of bits violating the constraints
on a correct AES key schedule is sufficiently small,
output the key.

We created an application called keyfind that im-
plements this algorithm for 128- and 256-bit AES keys.
The program takes a memory image as input and outputs
a list of likely keys. It assumes that key schedules are
contained in contiguous regions of memory and in the
byte order used in the AES specification [1]; this can be
adjusted to target particular cipher implementations. A
threshold parameter controls how many bit errors will be
tolerated in candidate key schedules. We apply a quick
test of entropy to reduce false positives.

We expect that this approach can be applied to many
other ciphers. For example, to identify DES keys based
on their key schedule, calculate the distance from each
potential subkey to the permutation of the key. A similar
method works to identify the precomputed multiplication
tables used for advanced cipher modes like LRW (see
Section 5.3).

6.2 Identifying RSA keys

Methods proposed for identifying RSA private keys range
from the purely algebraic (Shamir and van Someren sug-
gest, for example, multiplying adjacent key-sized blocks
of memory [39]) to the ad hoc (searching for the RSA

Object Identifiers found in ASN.1 key objects [34]). The
former ignores the widespread use of standard key for-
mats, and the latter seems insufficiently robust.

The most widely used format for an RSA private key
is specified in PKCS #1 [36] as an ASN.1 object of type
RSAPrivateKey with the following fields: version, mod-
ulus n, publicExponent e, privateExponent d, prime1
p, prime2 q, exponent1 d mod (p− 1), exponent2 d
mod (q−1), coefficient q−1 mod p, and optional other
information. This object, packaged in DER encoding, is
the standard format for storage and interchange of private
keys.

This format suggests two techniques we might use
for identifying RSA keys in memory: we could search
for known contents of the fields, or we could look for
memory that matches the structure of the DER encoding.
We tested both of these approaches on a computer running
Apache 2.2.3 with mod ssl.

One value in the key object that an attacker is likely
to know is the public modulus. (In the case of a web
server, the attacker can obtain this and the rest of the
public key by querying the server.) We tried searching for
the modulus in memory and found several matches, all of
them instances of the server’s public or private key.

We also tested a key finding method described by
Ptacek [34] and others: searching for the RSA Object
Identifiers that should mark ASN.1 key objects. This
technique yielded only false positives on our test system.

Finally, we experimented with a new method, searching
for identifying features of the DER-encoding itself. We
looked for the sequence identifier (0x30) followed a few
bytes later by the DER encoding of the RSA version
number and then by the beginning of the DER encoding
of the next field (02 01 00 02). This method found several
copies of the server’s private key, and no false positives.
To locate keys in decayed memory images, we can adapt
this technique to search for sequences of bytes with low
Hamming distance to these markers and check that the
subsequent bytes satisfy some heuristic entropy bound.

7 Attacking Encrypted Disks

Encrypting hard drives is an increasingly common coun-
termeasure against data theft, and many users assume that
disk encryption products will protect sensitive data even
if an attacker has physical access to the machine. A Cal-
ifornia law adopted in 2002 [10] requires disclosure of
possible compromises of personal information, but offers
a safe harbor whenever data was “encrypted.” Though
the law does not include any specific technical standards,
many observers have recommended the use of full-disk
or file system encryption to obtain the benefit of this safe
harbor. (At least 38 other states have enacted data breach
notification legislation [32].) Our results below suggest
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that disk encryption, while valuable, is not necessarily a
sufficient defense. We find that a moderately skilled at-
tacker can circumvent many widely used disk encryption
products if a laptop is stolen while it is powered on or
suspended.

We have applied some of the tools developed in this
paper to attack popular on-the-fly disk encryption sys-
tems. The most time-consuming parts of these tests were
generally developing system-specific attacks and setting
up the encrypted disks. Actually imaging memory and
locating keys took only a few minutes and were almost
fully automated by our tools. We expect that most disk
encryption systems are vulnerable to such attacks.

BitLocker BitLocker, which is included with some ver-
sions of Windows Vista, operates as a filter driver that
resides between the file system and the disk driver, en-
crypting and decrypting individual sectors on demand.
The keys used to encrypt the disk reside in RAM, in
scheduled form, for as long as the disk is mounted.

In a paper released by Microsoft, Ferguson [21] de-
scribes BitLocker in enough detail both to discover the
roles of the various keys and to program an independent
implementation of the BitLocker encryption algorithm
without reverse engineering any software. BitLocker uses
the same pair of AES keys to encrypt every sector on the
disk: a sector pad key and a CBC encryption key. These
keys are, in turn, indirectly encrypted by the disk’s master
key. To encrypt a sector, the plaintext is first XORed
with a pad generated by encrypting the byte offset of the
sector under the sector pad key. Next, the data is fed
through two diffuser functions, which use a Microsoft-
developed algorithm called Elephant. The purpose of
these un-keyed functions is solely to increase the proba-
bility that modifications to any bits of the ciphertext will
cause unpredictable modifications to the entire plaintext
sector. Finally, the data is encrypted using AES in CBC
mode using the CBC encryption key. The initialization
vector is computed by encrypting the byte offset of the
sector under the CBC encryption key.

We have created a fully-automated demonstration at-
tack called BitUnlocker. It consists of an external USB
hard disk containing Linux, a custom SYSLINUX-based
bootloader, and a FUSD [20] filter driver that allows Bit-
Locker volumes to be mounted under Linux. To use
BitUnlocker, one first cuts the power to a running Win-
dows Vista system, connects the USB disk, and then re-
boots the system off of the external drive. BitUnlocker
then automatically dumps the memory image to the ex-
ternal disk, runs keyfind on the image to determine
candidate keys, tries all combinations of the candidates
(for the sector pad key and the CBC encryption key), and,
if the correct keys are found, mounts the BitLocker en-
crypted volume. Once the encrypted volume has been
mounted, one can browse it like any other volume in

Linux. On a modern laptop with 2 GB of RAM, we found
that this entire process took approximately 25 minutes.

BitLocker differs from other disk encryption products
in the way that it protects the keys when the disk is not
mounted. In its default “basic mode,” BitLocker protects
the disk’s master key solely with the Trusted Platform
Module (TPM) found on many modern PCs. This config-
uration, which may be quite widely used [21], is particu-
larly vulnerable to our attack, because the disk encryption
keys can be extracted with our attacks even if the com-
puter is powered off for a long time. When the machine
boots, the keys will be loaded into RAM automatically
(before the login screen) without the entry of any secrets.

It appears that Microsoft is aware of this problem [31]
and recommends configuring BitLocker in “advanced
mode,” where it protects the disk key using the TPM
along with a password or a key on a removable USB
device. However, even with these measures, BitLocker
is vulnerable if an attacker gets to the system while the
screen is locked or the computer is asleep (though not if
it is hibernating or powered off).

FileVault Apple’s FileVault disk encryption software
has been examined and reverse-engineered in some de-
tail [44]. In Mac OS X 10.4, FileVault uses 128-bit AES in
CBC mode. A user-supplied password decrypts a header
that contains both the AES key and a second key k2 used
to compute IVs. The IV for a disk block with logical
index I is computed as HMAC-SHA1k2(I).

We used our EFI memory imaging program to ex-
tract a memory image from an Intel-based Macintosh
system with a FileVault volume mounted. Our keyfind
program automatically identified the FileVault AES key,
which did not contain any bit errors in our tests.

With the recovered AES key but not the IV key, we
can decrypt 4080 bytes of each 4096 byte disk block (all
except the first AES block). The IV key is present in mem-
ory. Assuming no bits in the IV key decay, an attacker can
identify it by testing all 160-bit substrings of memory to
see whether they create a plausible plaintext when XORed
with the decryption of the first part of the disk block. The
AES and IV keys together allow full decryption of the
volume using programs like vilefault [45].

In the process of testing FileVault, we discovered that
Mac OS X 10.4 and 10.5 keep multiple copies of the
user’s login password in memory, where they are vul-
nerable to imaging attacks. Login passwords are often
used to protect the default keychain, which may protect
passphrases for FileVault disk images.

TrueCrypt TrueCrypt is a popular open-source disk
encryption product for the Windows, Mac OS, and Linux
platforms. It supports a variety of ciphers, including AES,
Serpent, and Twofish. In version 4, all ciphers used LRW
mode; in version 5, they use XTS mode (see Section 5.3).
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TrueCrypt stores a cipher key and a tweak key in the
volume header for each disk, which is then encrypted
with a separate key derived from a user-entered password.

We tested TrueCrypt versions 4.3a and 5.0a running on
a Linux system. We mounted a volume encrypted with
a 256-bit AES key, then briefly cut power to the system
and used our memory imaging tools to record an image of
the retained memory data. In both cases, our keyfind
program was able to identify the 256-bit AES encryption
key, which did not contain any bit errors. For TrueCrypt
5.0a, keyfind was also able to recover the 256-bit AES
XTS tweak key without errors.

To decrypt TrueCrypt 4 disks, we also need the LRW
tweak key. We observed that TrueCrypt 4 stores the LRW
key in the four words immediately preceding the AES key
schedule. In our test memory image, the LRW key did
not contain any bit errors. (Had errors occurred, we could
have recovered the correct key by applying the techniques
we developed in Section 5.3.)

dm-crypt Linux kernels starting with 2.6 include built-
in support for dm-crypt, an on-the-fly disk encryption
subsystem. The dm-crypt subsystem handles a variety of
ciphers and modes, but defaults to 128-bit AES in CBC
mode with non-keyed IVs.

We tested a dm-crypt volume created and mounted
using the LUKS (Linux Unified Key Setup) branch of
the cryptsetup utility and kernel version 2.6.20. The
volume used the default AES-CBC format. We briefly
powered down the system and captured a memory image
with our PXE kernel. Our keyfind program identified
the correct 128-bit AES key, which did not contain any
bit errors. After recovering this key, an attacker could
decrypt and mount the dm-crypt volume by modifying
the cryptsetup program to allow input of the raw key.

Loop-AES Loop-AES is an on-the-fly disk encryption
package for Linux systems. In its recommended con-
figuration, it uses a so-called “multi-key-v3” encryption
mode, in which each disk block is encrypted with one
of 64 encryption keys. By default, it encrypts sectors
with AES in CBC mode, using an additional AES key to
generate IVs.

We configured an encrypted disk with Loop-AES ver-
sion 3.2b using 128-bit AES encryption in “multi-key-v3”
mode. After imaging the contents of RAM, we applied
our keyfind program, which revealed the 65 AES keys.
An attacker could identify which of these keys correspond
to which encrypted disk blocks by performing a series
of trial decryptions. Then, the attacker could modify the
Linux losetup utility to mount the encrypted disk with
the recovered keys.

Loop-AES attempts to guard against the long-term
memory burn-in effects described by Gutmann [23] and
others. For each of the 65 AES keys, it maintains two

copies of the key schedule in memory, one normal copy
and one with each bit inverted. It periodically swaps these
copies, ensuring that every memory cell stores a 0 bit for
as much time as it stores a 1 bit. Not only does this fail to
prevent the memory remanence attacks that we describe
here, but it also makes it easier to identify which keys be-
long to Loop-AES and to recover the keys in the presence
of memory errors. After recovering the regular AES key
schedules using a program like keyfind, the attacker
can search the memory image for the inverted key sched-
ules. Since very few programs maintain both regular and
inverted key schedules in this way, those keys are highly
likely to belong to Loop-AES. Having two related copies
of each key schedule provides additional redundancy that
can be used to identify which bit positions are likely to
contain errors.

8 Countermeasures and their Limitations

Memory imaging attacks are difficult to defend against
because cryptographic keys that are in active use need to
be stored somewhere. Our suggested countermeasures fo-
cus on discarding or obscuring encryption keys before an
adversary might gain physical access, preventing memory-
dumping software from being executed on the machine,
physically protecting DRAM chips, and possibly making
the contents of memory decay more readily.

Scrubbing memory Countermeasures begin with ef-
forts to avoid storing keys in memory. Software should
overwrite keys when they are no longer needed, and
it should attempt to prevent keys from being paged to
disk. Runtime libraries and operating systems should
clear memory proactively; Chow et al. show that this
precaution need not be expensive [13]. Of course, these
precautions cannot protect keys that must be kept in mem-
ory because they are still in use, such as the keys used by
encrypted disks or secure web servers.

Systems can also clear memory at boot time. Some
PCs can be configured to clear RAM at startup via a de-
structive Power-On Self-Test (POST) before they attempt
to load an operating system. If the attacker cannot by-
pass the POST, he cannot image the PC’s memory with
locally-executing software, though he could still physi-
cally move the memory chips to different computer with
a more permissive BIOS.

Limiting booting from network or removable media
Many of our attacks involve booting a system via the
network or from removable media. Computers can be
configured to require an administrative password to boot
from these sources. We note, however, that even if a
system will boot only from the primary hard drive, an
attacker could still swap out this drive, or, in many cases,
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reset the computer’s NVRAM to re-enable booting from
removable media.

Suspending a system safely Our results show that sim-
ply locking the screen of a computer (i.e., keeping the sys-
tem running but requiring entry of a password before the
system will interact with the user) does not protect the con-
tents of memory. Suspending a laptop’s state (“sleeping”)
is also ineffective, even if the machine enters screen-lock
on awakening, since an adversary could simply awaken
the laptop, power-cycle it, and then extract its memory
state. Suspending-to-disk (“hibernating”) may also be
ineffective unless an externally-held secret is required to
resume normal operations.

With most disk encryption systems, users can protect
themselves by powering off the machine completely when
it is not in use. (BitLocker in “basic” TPM mode remains
vulnerable, since the system will automatically mount the
disk when the machine is powered on.) Memory con-
tents may be retained for a short period, so the owner
should guard the machine for a minute or so after re-
moving power. Though effective, this countermeasure is
inconvenient, since the user will have to wait through the
lengthy boot process before accessing the machine again.

Suspending can be made safe by requiring a password
or other external secret to reawaken the machine, and
encrypting the contents of memory under a key derived
from the password. The password must be strong (or
strengthened), as an attacker who can extract memory
contents can then try an offline password-guessing attack.
If encrypting all of memory is too expensive, the system
could encrypt only those pages or regions containing im-
portant keys. Some existing systems can be configured to
suspend safely in this sense, although this is often not the
default behavior [5].

Avoiding precomputation Our attacks show that using
precomputation to speed cryptographic operations can
make keys more vulnerable. Precomputation tends to lead
to redundant storage of key information, which can help
an attacker reconstruct keys in the presence of bit errors,
as described in Section 5.

Avoiding precomputation may hurt performance, as po-
tentially expensive computations will be repeated. (Disk
encryption systems are often implemented on top of OS-
and drive-level caches, so they are more performance-
sensitive than might be assumed.) Compromises are pos-
sible; for example, precomputed values could be cached
for a predetermined period of time and discarded if not
re-used within that interval. This approach accepts some
vulnerability in exchange for reducing computation, a
sensible tradeoff in some situations.

Key expansion Another defense against key reconstruc-
tion is to apply some transform to the key as it is stored in
memory in order to make it more difficult to reconstruct in

the case of errors. This problem has been considered from
a theoretical perspective; Canetti et al. [11] define the no-
tion of an exposure-resilient function whose input remains
secret even if all but some small fraction of the output is
revealed, and show that the existence of this primitive is
equivalent to the existence of one-way functions.

In practice, suppose we have a key K which is not
currently in use but will be needed later. We cannot
overwrite the key but we want to make it more resistant
to reconstruction. One way to do this is to allocate a large
B-bit buffer, fill the buffer with random data R, then store
K⊕H(R) where H is a hash function such as SHA-256.

Now suppose there is a power-cutting attack which
causes d of the bits in this buffer to be flipped. If the hash
function is strong, the adversary must search a space of
size

(B/2+d
d

)
to discover which bits were flipped of the

roughly B/2 that could have decayed. If B is large, this
search will be prohibitive even when d is relatively small.

In principle, all keys could be stored in this way, re-
computed when in use, and deleted immediately after.
Alternatively, we could sometimes keep keys in memory,
introducing the precomputation tradeoff discussed above.

For greater protection, the operating system could per-
form tests to identify memory locations that are especially
quick to decay, and use these to store key material.

Physical defenses Some of our attacks rely on physical
access to DRAM chips or modules. These attacks can
be mitigated by physically protecting the memory. For
example, DRAM modules could be locked in place inside
the machine, or encased in a material such as epoxy to
frustrate attempts to remove or access them. Similarly, the
system could respond to low temperatures or opening of
the computer’s case by attempting to overwrite memory,
although these defenses require active sensor systems with
their own backup power supply. Many of these techniques
are associated with specialized tamper-resistant hardware
such as the IBM 4758 coprocessor [18, 41] and could
add considerable cost to a PC. However, a small amount
of memory soldered to a motherboard could be added at
relatively low cost.

Architectural changes Some countermeasures try to
change the machine’s architecture. This will not help
on existing machines, but it might make future machines
more secure.

One approach is to find or design DRAM systems that
lose their state quickly. This might be difficult, given
the tension between the desire to make memory decay
quickly and the desire to keep the probability of decay
within a DRAM refresh interval vanishingly small.

Another approach is to add key-store hardware that
erases its state on power-up, reset, and shutdown. This
would provide a safe place to put a few keys, though
precomputation of derived keys would still pose a risk.
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Others have proposed architectures that would routinely
encrypt the contents of memory for security purposes [28,
27, 17]. These would apparently prevent the attacks we
describe, as long as the encryption keys were destroyed
on reset or power loss.

Encrypting in the disk controller Another approach
is to encrypt data in the hard disk controller hardware, as
in Full Disk Encryption (FDE) systems such as Seagate’s
“DriveTrust” technology [38].

In its basic form, this approach uses a write-only key
register in the disk controller, into which the software
can write a symmetric encryption key. Data blocks are
encrypted, using the key from the key register, before
writing to the disk. Similarly, blocks are decrypted after
reading. This allows encrypted storage of all blocks on a
disk, without any software modifications beyond what is
required to initialize the key register.

This approach differs from typical disk encryption sys-
tems in that encryption and decryption are done by the
disk controller rather than by software in the main CPU,
and that the main encryption keys are stored in the disk
controller rather than in DRAM.

To be secure, such a system must ensure that the key
register is erased whenever a new operating system is
booted on the computer; otherwise, an attacker can reboot
into a malicious kernel that simply reads the disk contents.
For similar reasons, the system must also ensure that the
key register is erased whenever an attacker attempts to
move the disk controller to another computer (even if the
attacker maintains power while doing so).

Some systems built more sophisticated APIs, imple-
mented by software on the disk controller, on top of
this basic facility. Such APIs, and their implementation,
would require further security analyses.

We have not evaluated any specific systems of this type.
We leave such analyses for future work.

Trusted computing Trusted Computing hardware, in
the form of Trusted Platform Modules (TPMs) [42] is now
deployed in some personal computers. Though useful
against some attacks, today’s Trusted Computing hard-
ware does not seem to prevent the attacks described here.

Deployed TCG TPMs do not implement bulk encryp-
tion. Instead, they monitor boot history in order to decide
(or help other machines decide) whether it is safe to store
a key in RAM. If a software module wants to use a key,
it can arrange that the usable form of that key will not
be stored in RAM unless the boot process has gone as
expected [31]. However, once the key is stored in RAM,
it is subject to our attacks. TPMs can prevent a key from
being loaded into memory for use, but they cannot prevent
it from being captured once it is in memory.

9 Conclusions

Contrary to popular belief, DRAMs hold their values
for surprisingly long intervals without power or refresh.
Our experiments show that this fact enables a variety of
security attacks that can extract sensitive information such
as cryptographic keys from memory, despite the operating
system’s efforts to protect memory contents. The attacks
we describe are practical—for example, we have used
them to defeat several popular disk encryption systems.

Other types of software may be similarly vulnerable.
DRM systems often rely on symmetric keys stored in
memory, which may be recoverable using the techniques
outlined in our paper. As we have shown, SSL-enabled
web servers are vulnerable, since they often keep in mem-
ory private keys needed to establish SSL sessions. Fur-
thermore, methods similar to our key-finder would likely
be effective for locating passwords, account numbers, or
other sensitive data in memory.

There seems to be no easy remedy for these vulnera-
bilities. Simple software changes have benefits and draw-
backs; hardware changes are possible but will require
time and expense; and today’s Trusted Computing tech-
nologies cannot protect keys that are already in memory.
The risk seems highest for laptops, which are often taken
out in public in states that are vulnerable to our attacks.
These risks imply that disk encryption on laptops, while
beneficial, does not guarantee protection.

Ultimately, it might become necessary to treat DRAM
as untrusted, and to avoid storing sensitive data there, but
this will not be feasible until architectures are changed to
give software a safe place to keep its keys.
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